Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Dmitri O. Charkin, ${ }^{\text {a }}{ }^{\text {* }}$
Pavel A. Plachinda, ${ }^{\text {a }}$ Natalie V. Pervukhina, ${ }^{\text {b }}$ Stanislav V. Borisov ${ }^{\text {b }}$ and Svetlana A. Magarill ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Materials Sciences, Lomonosov Moscow State University, Vorobievy Gory, GSP-2, Moscow, 119992 Russian Federation, and ${ }^{\mathbf{b}}$ Nikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akad.
Lavrentiev prospect 3, Novosibirsk 90, 630090 Russian Federation

Correspondence e-mail:
charkin@inorg.chem.msu.ru

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{e}-\mathrm{O})=0.014 \AA$
R factor $=0.035$
$w R$ factor $=0.089$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

$\mathrm{PbCl}\left(\mathrm{ReO}_{4}\right)$, a derivative of the matlockite (PbFCl) structure

Single crystals of lead(II) chloride perrhenate(VII), (I), were obtained from a reaction of PbCl_{2} and $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$. Its structure can be considered as an alternation of lead-chlorine slices, $\left[\mathrm{Pb}_{2} \mathrm{Cl}_{2}\right]^{2+}$, formed of edge-sharing ClPb_{4} tetrahedra, and double layers of perrhenate anions, $\left[\mathrm{ReO}_{4}{ }^{-}\right]_{2}$. Except for one O atom, all other atoms in (I) are situated on mirror planes. The arrangement is derived from a distorted matlockite (PbFCl) structure by replacing F with Cl , and introducing the ReO_{4} group instead of Cl . The structure of (I) is the first PbFCl derivative containing tetrahedral anions.

Comment

Lead oxide halides often form complicated layered structures. A large family of structurally related compounds with general formula $(\mathrm{Pb}, M)_{8} \mathrm{O}_{8+x} X_{2}$ is observed for $M=\mathrm{Si}, \mathrm{Ge}, \mathrm{Ti}, \mathrm{V}, \mathrm{Nb}$, Ta, P, As, S and Cr (Aurivillius, 1982, 1983; Cooper \& Hawthorne, 1994). Our investigation of the systems $\mathrm{PbO}-$ $\mathrm{Pb} X_{2}-\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$, in the search for possible Re -containing analogues, resulted in two new compounds $\mathrm{Pb} X\left(\mathrm{ReO}_{4}\right), X=$ Cl and Br , and we present the results for the Cl member, (I), here.

The crystal structure of (I) is made up of $\left[\mathrm{Pb}_{2} \mathrm{Cl}_{2}\right]^{2+}$ layers and $\left[\mathrm{ReO}_{4}\right]_{2}$ double layers alternating along the b axis (Fig. 1). Compound (I) can be derived from a distorted matlockite (PbFCl) structure (Pasero \& Perchiazzi, 1996) by replacing F^{-} with Cl^{-}, and introducing the ReO_{4}^{-}group instead of Cl^{-}. The $\left[\mathrm{Pb}_{2} \mathrm{Cl}_{2}\right]^{2+}$ layers can be considered as slices from a fluorite-type structure where one-half of the anions are removed, which results in a net of condensed ClPb_{4} tetrahedra. The stability of such anion-centred tetrahedra (e.g. $\mathrm{OCu}_{4}, \mathrm{OLn}_{4}, \mathrm{OPb}_{4}, \mathrm{OHg}_{4}$) has been addressed previously (Krivovichev \& Filatov, 1999; Borisov et al., 2005). The $\left[\mathrm{Pb}_{2} \mathrm{Cl}_{2}\right]^{2+}$ slices are distorted in a way reminiscent of AgCuI_{2} (Avilov \& Baranova, 1972), but the $\mathrm{Pb}-\mathrm{Cl}$ distances [2.834 (6) $-3.186(6) \AA$ A are similar to those observed in the related $\mathrm{PbSbO}_{2} \mathrm{Cl}(3.137-3.255 \AA$; Giuseppetti \& Tadini, 1973) whose structure may alternatively be described as a sequence of $\left[\mathrm{Pb}_{2} \mathrm{Cl}_{2}\right]^{2+}$ fluorite-type slices and $\left[\mathrm{SbO}_{2}\right]^{-}$ribbons. The coordination polyhedron around Pb^{2+} in (I) is a distorted tricapped trigonal prism $(4 \mathrm{Cl}+5 \mathrm{O}$; Fig. 2).

There are no structural analogies between $\mathrm{Pb} X\left(\mathrm{ReO}_{4}\right)$ and any of the structurally characterized $A X\left(M \mathrm{O}_{4}\right)$ compounds ($A=\mathrm{Ln}, \mathrm{Bi}, \mathrm{Fe} ; X=\mathrm{Hal}, \mathrm{OH} ; M=\mathrm{S}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$) (Aurivillius \& Lowenhielm, 1964; Brixner et al., 1982; Bueno et al., 1989, 1991; Johansson, 1962; Klevtsova \& Borisov, 1969; Wang et al., 2000; Wickleder, 1999). However, formation of isostructural compounds was detected during exploration of alkaline earth analogues of (I).

Received 29 November 2005 Accepted 20 December 2005 Online 7 January 2006

Figure 1
The crystal structure of (I). Pb atoms are brown, ReO_{4} tetrahedra are blue, Cl atoms are green, and O atoms are red.

Figure 2
The environment around the Pb and Re atoms. Displacement ellipsoids are plotted at the 50% probability level. Solid lines are given for bonds shorter than $2.84 \AA$, whereas dashed lines represent bonds longer than $2.84 \AA$. [Symmetry codes: (i) $-x, y, z$; (ii) $\frac{1}{2}-x,-y,-\frac{1}{2}+z$; (iii) x, y, $-1+z ;$ (iv) $1-x, y, z ;$ (v) $1-x, y,-1+z$; (vi) $\frac{3}{2}+x, 1-y,-\frac{1}{2}+z$; (vii) $\left.\frac{1}{2}-x, 1-y,-\frac{1}{2}+z\right]$.

Experimental

Polycrystalline samples of $\mathrm{PbCl}\left(\mathrm{ReO}_{4}\right)$ and $\mathrm{PbBr}\left(\mathrm{ReO}_{4}\right)$ were obtained by annealing $\mathrm{Pb} X_{2}(X=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ in evacuated silica tubes at $670-520 \mathrm{~K}$ for $1-2 \mathrm{~d} . \mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ was obtained by annealing a 1:2 mixture of PbO and $\mathrm{NH}_{4} \mathrm{ReO}_{4}$ first at 723 K for 24 h and, after regrinding, at 823 K for 55 h . All starting compounds were of purity 99% or higher. Single crystals were mechanically extracted from $3 \mathrm{~Pb} X_{2}: \mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ mixtures melted at $620-670 \mathrm{~K}$ for $36-48 \mathrm{~h}$. The crystals were brown to almost black thick platelets or prisms. Ground powders are off-white. Second harmonic generation (SHG) tests were positive for both halide perrhenates. The cell parameters of the isostructural $\mathrm{PbBr}\left(\mathrm{ReO}_{4}\right)$ are $a=5.7473$ (6) $\AA, b=9.6512$ (9) \AA and $c=4.5268$ (6) A. Compound (I) decomposes upon heating in air around 680 K , yielding black amorphous products. $\mathrm{PbBr}\left(\mathrm{ReO}_{4}\right)$ melts incongruently at about 670 K . Attempts to prepare lead perrhenate analogues with $X=\mathrm{F}$ or I , as well as $\mathrm{Bi} X M \mathrm{O}_{4}(X=$ halogen, $M=\mathrm{Mo}$ or W), were not successful, leaving unreacted $\mathrm{Pb} X_{2}$ and $\mathrm{Pb}\left(\mathrm{ReO}_{4}\right)_{2}$ or BiOX and $M \mathrm{O}_{3}$.

Crystal data

$\mathrm{PbCl}\left(\mathrm{ReO}_{4}\right)$
$M_{r}=492.84$
Orthorhombic, Pmn $_{1}$
$a=5.6800$ (3) \AA
$b=9.4389$ (5) \AA
$c=4.4656(2) \AA$
$V=239.41(2) \AA^{3}$
$Z=2$
$D_{x}=6.837 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker-Nonius X8 APEX CCD
area-detector diffractometer
φ scans
Absorption correction: numerical (XPREP in SHELXTL; Bruker, 2004)
$T_{\text {min }}=0.016, T_{\text {max }}=0.163$
1798 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.089$
$S=1.27$
518 reflections
41 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0539 P)^{2}\right.$
$+0.5031 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 21 reflections
$\theta=4.2-32.6^{\circ}$
$\mu=60.82 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, black
$0.07 \times 0.06 \times 0.03 \mathrm{~mm}$

518 independent reflections
517 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-5 \rightarrow 5$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=5.68 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.20 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.109 (7)
Absolute structure: Flack (1983),
160 Friedel pairs
Flack parameter: 0.07 (2)

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Re}-\mathrm{O} 3$	$1.67(2)$	$\mathrm{Pb}-\mathrm{Cl}$	$2.834(6)$
$\mathrm{Re}-\mathrm{O} 1$	$1.718(15)$	$\mathrm{Pb}-\mathrm{O} 2^{\text {iii }}$	$3.084(13)$
$\mathrm{Re}-\mathrm{O} 2$	$1.741(10)$	$\mathrm{Pb}-\mathrm{Cl}^{\text {viii }}$	
$\mathrm{Pb}-\mathrm{O} 2$	$2.537(12)$	$\mathrm{Pb}-\mathrm{Cl}^{\text {iii }}$	$3.147(2)$
$\mathrm{Pb}-\mathrm{O} 1^{\text {ii }}$	$2.657(16)$		$3.186(6)$
$\mathrm{O} 3-\mathrm{Re}-\mathrm{O} 1$	$106.3(9)$	$\mathrm{O} 3-\mathrm{Re}-\mathrm{O} 2^{\mathrm{i}}$	
$\mathrm{O} 3-\mathrm{Re}-\mathrm{O} 2$	$106.1(6)$	$\mathrm{O} 1-\mathrm{Re}-\mathrm{O} 2^{\mathrm{i}}$	$106.1(6)$
$\mathrm{O} 1-\mathrm{Re}-\mathrm{O} 2$	$113.3(5)$	$\mathrm{O} 2-\mathrm{Re}-\mathrm{O} 2^{\mathrm{i}}$	$113.3(5)$
Symmetry codes: (i)	$-x, y, z ;$	(ii)	$-x+\frac{1}{2},-y, z-\frac{1}{2} ;$
$-x+\frac{3}{2},-y+1, z-\frac{1}{2}$.	(iii)	$x, y, z-1 ; \quad$ (viii)	

inorganic papers

The highest peak is located $0.79 \AA$ from Re , and the deepest hole $0.96 \AA$ from Pb .

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

This work has been financially supported by the Russian Fundamental Research Foundation (grant 04-05-64058). The authors are grateful to N. V. Kurat'eva for helpful comments.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Aurivillius, B. (1982). Chem. Scr. 19, 97-107.
Aurivillius, B. (1983). Chem. Scr. 22, 5-11.
Aurivillius, B. \& Lowenhielm, A. (1964). Acta Chem. Scand. 18, 1937-1957.

Avilov, A. S. \& Baranova, R. V. (1972). Kristallografiya, 17, 219-220.
Borisov, S. V., Magarill, S. A., Pervukhina, N. V. \& Peresypkina, E. V. (2005). Crystallogr. Rev. 11, 87-123.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Brixner, L. H., Chen, H. Y. \& Foris, C. M. (1982). Mater. Res. Bull. 17, 15451556.

Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Bueno, I., Parada, C., Gutierrez-Puebla, E., Monge, A. \& Ruiz-Valero, C. (1989). J. Solid State Chem. 78, 78-83.

Bueno, I., Parada, C., Monge, A. \& Ruiz-Valero, C. (1991). J. Solid State Chem. 90, 263-269.
Burnett, M. H. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cooper, M. A. \& Hawthorne, F. C. (1994). Am. Mineral. 79, 550-554.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Giuseppetti, G. \& Tadini, C. (1973). Period. Mineral. 42, 335-345.
Johansson, G. (1962). Acta Chem. Scand. 16, 1234-1244.
Klevtsova, R. F. \& Borisov, S. V. (1969). Kristallografiya, 14, 904-907.
Krivovichev, S. V. \& Filatov S. K. (1999). Acta Cryst. B55, 664-676.
Pasero, M. \& Perchiazzi, N. (1996). Mineral. Mag. 60, 833-836.
Sheldrick G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wang, X. Q., Liu, L. M., Ross, K. \& Jacobson, A. J. (2000). Solid State Sci. 2, 109-118.
Wickleder, M. S. (1999). Z. Anorg. Allg. Chem. 625, 727-728.

[^0]: (C) 2006 International Union of Crystallography

